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Abstract

We present a new representation of solutions of the Benjamin-Ono equation that
are periodic in space and time. Up to an additive constant and a Galilean transfor-
mation, each of these solutions is a previously known, multi-periodic solution; however,
the new representation unifies the subset of such solutions with a fixed spatial period
and a continuously varying temporal period into a single network of smooth manifolds
connected together by an infinite hierarchy of bifurcations. Our representation explic-
itly describes the evolution of the Fourier modes of the solution as well as the particle
trajectories in a meromorphic representation of these solutions; therefore, we have also
solved the problem of finding periodic solutions of the ordinary differential equation
governing these particles, including a description of a bifurcation mechanism for adding
or removing particles without destroying periodicity. We illustrate the types of bifurca-
tion that occur with several examples, including degenerate bifurcations not predicted
by linearization about traveling waves.
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1 Introduction

The Benjamin-Ono equation is a model water wave equation for the propagation of unidirec-

tional, weakly nonlinear internal waves in a deep, stratified fluid [7, 9, 19]. It is a non-linear,
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non-local dispersive equation that, after a suitable choice of spatial and temporal scales,

may be written

ut = Huxx − uux, Hf(x) =
1
π
PV

∫ ∞
−∞

f(ξ)
x− ξ

dξ. (1)

Our motivation for studying time-periodic solutions of this equation was inspired by the

analysis of Plotnikov, Toland and Iooss [21, 13] using the Nash-Moser implicit function

theorem to prove the existence of non-trivial time periodic solutions of the two-dimensional

water wave over an irrotational, incompressible, inviscid fluid. We hope to learn more

about these solutions through direct numerical simulation. As a first step, in collaboration

with D. Ambrose, the author has developed a numerical continuation method [4, 3] for the

computation of time-periodic solutions of non-linear PDE and used it to compute families

of time-periodic solutions of the Benjamin-Ono equation, which shares many of the features

of the water wave such as non-locality, but is much less expensive to compute.

Because we came to this problem from the perspective of developing numerical tools

that can also be used to study the full water wave equation, we did not take advantage of

the existence of solitons or complete integrability in our numerical study of the Benjamin-

Ono equation. The purpose of the current paper is to bridge this connection, i.e. to show

how the form of the exact solutions we deduced from numerical simulations is related to

previously known, multi-periodic solutions [22, 10, 16]. Our representation is quite different,

describing time-periodic solutions in terms of the trajectories of the Fourier modes, which

are expressed in terms of N particles βj(t) moving through the unit disk of the complex

plane. Thus, one of the main results of this paper is to show the relationship between

the meromorphic solutions described e.g. in [8] and these multi-periodic solutions. Our

representation also simplifies the computation and visualization of multi-periodic solutions.

Rather than solve a system of non-linear algebraic equations at each x to find u(x) as

was done in [16], we represent u(x) through its Fourier coefficients by finding the zeros

βj of a polynomial whose coefficients involve only a finite number of non-zero temporal

Fourier modes. We find that plotting the trajectories of the particles βj(t) often gives more

information about the solution than making movies of u(x, t) directly.

A key difference in our setup of the problem is that we wish to fix the spatial period

once and for all (using e.g. 2π) and describe all families of time-periodic solutions in which

the temporal period depends continuously on the parameters of the family. This framework

may be perceived as awkward and overly restrictive by some readers, and we agree that the

most natural “periodic” generalization of the N -soliton solutions [15, 17] of an integrable

system such as Benjamin-Ono are the N -phase quasi-periodic (or multi-periodic) solutions

[12, 22, 10, 16]. However, our goal in this paper is not to study the behavior of these
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solutions in the long wave-length limit, but rather to understand how all these families of

solutions are connected (continuously) together through a hierarchy of bifurcations. The

additional restriction of exact periodicity makes the bifurcation problem harder for inte-

grable problems, but easier for other problems that can only be studied numerically. To

our knowledge, bifurcation between levels in the hierarchy of multi-periodic solutions of

Benjamin-Ono has not previously been discussed. Indeed, with the exception of [10], previ-

ous representations of these solutions are missing a key degree of freedom, the mean, which

must vary in order for these solutions to connect with each other. The most interesting

result of this paper is that counting dimensions of nullspaces of the linearized problem does

not predict certain degenerate bifurcations that allow for immediate jumps across several

levels of the infinite hierarchy of time-periodic solutions. As a consequence, in our numerical

studies, we found bifurcations from traveling waves to the second level of the hierarchy, and

interior bifurcations from these solutions to the third level of the hierarchy, but never saw

bifurcations from traveling waves directly to the third level of the hierarchy (as we did not

know where to look for them). This will be important to keep in mind in problems such as

the water wave, where exact solutions are not expected to be found.

We believe we have accounted for all time-periodic solutions of the Benjamin-Ono equa-

tion with a fixed spatial period, but do not know how to prove this. Even for the simplest

case of a traveling wave, it is surprisingly difficult to prove that the solitary and periodic

waves found by Benjamin [7] are the only possibilities; see [5] and Appendix B. For the

closely related KdV equation [1, 18, 23], substitution of u(x, t) = u0(x− ct) into the equa-

tion leads to an ordinary differential equation for u0(x) with periodic solutions involving

Jacobi elliptic functions; see e.g. [20]. However, for Benjamin-Ono, the equation for the

traveling wave shape is non-local due to the Hilbert transform. Nevertheless, Amick and

Toland [5] have shown that any traveling wave solution of Benjamin-Ono can be extended

to the upper half-plane to agree with the real part of a bounded, holomorphic function

satisfying a complex ODE; thus, in spite of non-locality, we are able to obtain uniqueness

by solving an initial value problem for u0(x). Interestingly, these traveling wave shapes are

rational functions of eix, which are simpler than the cnoidal solutions of KdV. This analysis

of traveling waves via holomorphic extension to the upper half-plane is similar in spirit

to the analysis of rapidly decreasing solutions of Benjamin-Ono via the inverse scattering

transform [11, 14]. Thus, it may be possible to prove that we have accounted for all peri-

odic solutions of Benjamin-Ono by developing a spatially periodic version of the IST that is

analogous to the study of Bloch eigenfunctions and Riemann surfaces for the periodic KdV

equation [18, 6], but this has not yet been carried out.

This paper is organized as follows. In Section 2, we describe meromorphic solutions [8]
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of the Benjamin-Ono equation, which are a class of solutions represented by a system of N

particles evolving in the upper half-plane (or, in our representation, the unit disk) according

to a completely integrable ODE. We also show the relationship between the elementary

symmetric functions of these particles and the Fourier coefficients of the solution, which

were observed in numerical experiments to have trajectories in the complex plane consisting

of epicycles involving a finite number of circular orbits. In Section 3, we summarize the

results of [3] in the form of a theorem (not proved in [3]) enumerating all bifurcations from

traveling waves to the second level of the hierarchy of time-periodic solutions. The new idea

that allows us to prove the theorem is to show that all the zeros of a certain polynomial

lie inside the unit circle using Rouché’s theorem. In Section 4, we state a theorem that

parametrizes solutions at level M of the hierarchy through an explicit description of the

particle trajectories βj(t). This theorem also describes the way in which different levels of

the hierarchy are connected together through bifurcation. The proof of this theorem shows

the relationship with previous studies of multi-periodic solutions. In Section 5, we give

several examples of degenerate and non-degenerate bifurcations between various levels of

the hierarchy. We also use these examples to illustrate some of the topological changes that

occur in the particle trajectories along the paths of solutions between bifurcation states.

Finally, in Appendix A, we give a direct proof that the particles βj(t) in our formulas lie

inside the unit disk in the complex plane; in Appendix B, we discuss uniqueness of traveling

wave solutions.

2 Meromorphic Solutions and Particle Trajectories

In this section, we consider spatially periodic solutions of the Benjamin-Ono equation,

ut = Huxx − uux. (2)

Here H is the Hilbert transform defined in (1), which has the symbol Ĥ(k) = −i sgn(k). It

is well known [8] that meromorphic solutions of (2) of the form

u(x, t) = 2 Re

{
N∑
l=1

2k
eik[x+kt−xl(t)] − 1

}
(3)

exist, where k is a real wave number and the particles xl(t) evolve in the upper half of the

complex plane according to the equation

dxl
dt

=
N∑

m=1
m 6=l

2k
e−ik(xm−xl) − 1

+
N∑
m=1

2k
e−ik(xl−x̄m) − 1

, (1 ≤ l ≤ N). (4)
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This representation is useful for studying the dynamics of solitons of (2) over R, which may

be obtained from (3) in the long wave-length limit k → 0. However, over a fixed periodic

domain R
/

2πZ, we have found it more convenient to work with particles βl(t) evolving in

the unit disk of the complex plane,

βl = e−ix̄l ∈ ∆ := {z : |z| < 1}, (5)

where a bar denotes complex conjugation. Up to an additive constant and a Galilean

transformation, the solution u in (3) may then be written

u(x, t) = α0 +
N∑
l=1

uβl(t)(x), (6)

where we have included the mean α0 as an additional parameter of the solution and uβ(x)

is defined via

uβ(x) =
4|β|{cos(x− θ)− |β|}

1 + |β|2 − 2|β| cos(x− θ)
,

(
β = |β|e−iθ

)
. (7)

From (4) or direct substitution into (2), the βl are readily shown to satisfy

β̇l =
N∑

m=1
m6=l

2i
β−1
l − β

−1
m

+
N∑
m=1

2iβ2
l

βl − β̄−1
m

+ i(1− α0)βl, (1 ≤ l ≤ N). (8)

It is awkward to work with uβ(x) in physical space; however, in Fourier space, it takes the

simple form

ûβ,k =


2β̄|k|, k < 0,

0, k = 0,

2βk, k > 0.

(9)

As a result, the Fourier coefficients ck(t) of u(x, t) in (6) are simply power sums of the

particle trajectories,

ck(t) =

α0 k = 0,

2
[
βk1 (t) + · · ·+ βkN (t)

]
, k > 0,

(10)

where ck = c̄−k for k < 0. In [3], it was found numerically that although the βl often execute

very complicated periodic orbits, the elementary symmetric functions σj defined via

σ0 = 1, σj =
∑

l1<···<lj

βl1 · · ·βlj , (j = 1, . . . , N) (11)

have orbits that are circles (or at worst, epicycles involving a finite number of non-zero

temporal Fourier coefficients) in the complex plane. As a consequence, the spatial Fourier
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coefficients ck = 2 tr(Σk), where k ≥ 1 and Σ is the companion matrix of the polynomial

P (z) =
∏

(z − βj), also have trajectories that are epicycles, which we noticed immediately

in our numerical simulations. All the solutions in this paper will be of the form
N∏
l=1

[z − βl(t)] =
N∑
j=0

(−1)jσj(t)zN−j = P (z, e−iωt), (12)

where

P (z, λ) =
N∑
j=0

(−1)j σ̃j(λ)zN−j (13)

is a monic polynomial in z with coefficients σ̃j that are Laurent polynomials in λ, and such

that for any λ on the unit circle S1 in the complex plane, the roots β1, . . . ,βN of P (·, λ) lie

inside the unit disk.

We may express the solution u in (6) directly in terms of P as follows:

u(x, t) = α0 +
N∑
l=1

uβl(t)(x) = α0 +
N∑
l=1

4 Re

{ ∞∑
k=1

βl(t)keikx
}

(14)

= α0 +
N∑
l=1

4 Re
{

z

z − βl(t)
− 1
}

= α0 + 4 Re
{
z∂zP (z, λ)
P (z, λ)

−N
}
,

(
z = e−ix

λ = e−iωt

)
.

Note that Hu = 4 Re {−i [(z∂zP )/P −N ]}. The choice z = e−ix (as opposed to e+ix)

follows from the decision in (9) to have Fourier coefficients with positive wave numbers carry

powers of β rather than β̄, while the choice λ = e−iωt leads to a natural sign convention

when we interpret the exponents in the Laurent polynomials σ̃j(λ) in (13) as measures of

the direction and velocity of the traveling waves obtained in certain limits. It was shown in

[3] that (14) is a solution of (2) if there is a constant γ ∈ R such that

γP00P̄00 + P̄00

[
P20 + ωP01 + (α0 − 4N)P10

]
+ P00

[
P̄20 + ωP̄01 + (α0 − 4N)P̄10

]
+ 2P10P̄10 = 0,

(15)

where

Pjk = (z∂z)j(λ∂λ)kP (z, λ)
∣∣∣∣z=e−ix

λ=e−iωt

. (16)

The goal of this paper is to find explicit formulas for the solutions P (z, λ) of (15), show

how they fit in with the previously known families of multi-periodic solutions described in

[22, 10, 16], and determine how these families are connected together through bifurcation.

3 Paths connecting arbitrary traveling waves

In [3], a classification of bifurcations from traveling waves was proposed after all time-

periodic solutions of the linearization of (2) about traveling waves were found in closed form.
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A numerical continuation method was then developed to follow paths of non-trivial time-

periodic solutions beyond the realm of validity of the linearization until another traveling

wave was reached (or until the solution blows up as the bifurcation parameter approaches

a critical value). Through extensive data fitting of the numerical solutions, the exact form

of the solutions on this path was deduced. In this section, we give an alternative formula

for these exact solutions that unifies the three cases described in [3] and makes it possible

to show that the roots βl of the polynomial P (·, λ) are inside the unit circle for λ ∈ S1.

An N -hump traveling wave is uniquely determined by the mean, α0, a complex number

β ∈ ∆, and a positive integer, N :

uα0,N,β(x, t) = α0 +
N∑
l=1

uβl(t)(x), βl(t) = N
√
βe−ict, c = α0 −N

1− 3|β|2

1− |β|2
. (17)

Here βl ranges over all Nth roots of β. This solution may also be written

uα0,N,β(x, t) = uN,β(x− ct) + c, uN,β = N
1− 3|β|2

1− |β|2
+Nuβ(Nx), (18)

where uN,β(x) = Nu1,β(Nx) is the N -hump stationary solution; hence, the traveling wave

moves to the right if c > 0. We can solve for c and α0 in terms of the period T > 0 and

a speed index ν ∈ Z indicating how many increments of 2π
N the wave moves to the right in

one period:

cT =
2πν
N

, α0 = c+N
1− 3|β|2

1− |β|2
. (19)

In order to bifurcate to a non-trivial time-periodic solution, the period T must be related

to an eigenvalue

ωN,n =

(n)(N − n), 1 ≤ n ≤ N − 1,

(n+ 1−N)
[
n+ 1 +N

(
1− 1−3|β|2

1−|β|2

)]
, n ≥ N

(20)

of the linear operator [3] governing the evolution of solutions of the linearization about the

N -hump stationary solution:

ωN,nT =
2πm
N

, 1 ≤ m ∈

nν +NZ, 1 ≤ n < N,

(n+ 1)ν +NZ, n ≥ N.
(21)

This requirement on the oscillation index m enforces the condition that the linearized solu-

tion over the stationary solution return to a phase shift of itself to account for the fact that

the traveling wave has moved during this time; see [3]. Here we have used the fact that if

u(x, t) = uN,β(x) is a stationary solution and

U(x, t) = u(x− ct, t) + c (22)
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is a traveling wave, then the solutions v and V of the linearizations about u and U , re-

spectively, satisfy V (x, t) = v(x − ct, t). The parameter β together with the four integers

(N, ν, n,m) enumerate the bifurcations from traveling waves, which comprise the first level

of the hierarchy of time-periodic solutions of the Benjamin-Ono equation, to the second

level of this hierarchy. We will see later that other bifurcations from traveling waves to

higher levels of the hierarchy also exist, which is interesting as they are not predicted from

counting dimensions of nullspaces in the linearization.

After (numerically) mapping out which bifurcations (N, ν, n,m) and (N ′, ν ′, n′,m′) were

connected by paths of non-trivial solutions, it was found that N , N ′, ν and ν ′ can be chosen

independently as long as

N ′ < N, ν ′ >
N ′

N
ν. (23)

The other parameters are then given by

m = m′ = Nν ′ −N ′ν > 0, n = N −N ′, n′ = N − 1. (24)

The following theorem proves that these numerical conjectures are correct.

Theorem 1 Let N , N ′, ν and ν ′ be integers satisfying N > N ′ > 0 and m = Nν ′−N ′ν > 0.

There is a four-parameter family of time-periodic solutions connecting the traveling wave

bifurcations (N ′, ν ′, N − 1,m) and (N, ν,N −N ′,m). These solutions are of the form

u(x, t) = α0 +
N∑
l=1

uβl(t−t0)(x− x0), (25)

where β1(t), . . . , βN (t) are the roots of the polynomial P (·, e−iωt) defined by

P (z, λ) = zN +Aλν
′
zN−N

′
+Bλν−ν

′
zN
′
+ Cλν , (26)

with

A =

√
N −N ′ + s+ s′

N + s+ s′

√
(N + s′)s′

N ′(N −N ′) + (N + s′)s′
, (27)

B =

√
(N + s′)s′

N ′(N −N ′) + (N + s′)s′

√
s

N −N ′ + s
, C =

√
s

N −N ′ + s

√
N −N ′ + s+ s′

N + s+ s′
,

α0 =
N2ν ′ − (N ′)2ν

m
− 2s− 2N ′(ν ′ − ν)

m
s′, ω =

2π
T

=
N ′(N −N ′)(N + 2s′)

m
.

The four parameters are s ≥ 0, s′ ≥ 0, x0 ∈ R and t0 ∈ R. The N - and N ′-hump traveling

waves occur when s′ = 0 and s = 0, respectively. When both are zero, we obtain the constant

solution u(x, t) ≡ N2ν′−(N ′)2ν
m .
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Proof: Without loss of generality, we may assume x0 = 0 and t0 = 0. It was shown in

[3] that P (z, λ) of the form (26) satisfies (15) if

γ = (3N − α0)N − νω, (28)

[(N ′)2 − 2NN ′ +N ′α0 − ν ′ω]B + [(N ′)2 + 2NN ′ −N ′α0 + ν ′ω]AC = 0, (29)[
3N2 − 4NN ′ + (N ′)2 − (N −N ′)α0 + (ν − ν ′)ω

]
BC

−
[
N2 − (N ′)2 − (N −N ′)α0 + (ν − ν ′)ω

]
A = 0, (30)

(Nα0 − νω −N2) +
[
(2N ′ −N)α0 + (ν − 2ν ′)ω + 3N2 − 8NN ′ + 4(N ′)2

]
B2

+
[
(N − 2N ′)α0 + 4(N ′)2 −N2 + (2ν ′ − ν)ω

]
A2 +

[
(3N − α0)N + νω

]
C2 = 0. (31)

Using a computer algebra system, it is easy to check that (29)–(31) hold when A, B, C, α0

and ω are defined as in (27). When s′ = 0, we have A = B = 0 and C =
√

s

N + s
so that

βl(t) = N
√
−Cλν = N

√
−Ce−ict, c =

ων

N
=
N ′(N −N ′)ν

m
= α0 −N

1− 3C2

1− C2
,

where each βl is assigned a distinct Nth root of −C. By (17), this is an N -hump traveling

wave with speed index ν and period T = 2π
ω . Similarly, when s = 0, we have B = C = 0

and A =

√
s′

N ′ + s′
so that

βl(t) =

{
N′√−Ae−ict l ≤ N ′

0 l > N ′

}
, c =

ων ′

N ′
=

(N −N ′)(N + 2s′)ν ′

m
= α0−N ′

1− 3A2

1−A2
,

which is an N ′-hump traveling wave with speed index ν ′ and period T = 2π
ω .

Finally, we show that the roots of P (·, λ) are inside the unit disk for any λ on the unit

circle, S1. We will use Rouché’s theorem [2]. Let

f1(z) = zN+Aλν
′
zN−N

′
+Bλν−ν

′
zN
′
+ Cλν ,

f2(z) = zN+Aλν
′
zN−N

′
,

f3(z) = zN +Bλν−ν
′
zN
′
.

From (27), we see that {A,B,C} ⊆ [0, 1), A ≥ BC, B ≥ CA and C ≥ AB. Thus,

d2(z) := |f2(z)|2 − |f1(z)− f2(z)|2 = |λ−ν′zN ′ +A|2 − |Bλ−ν′zN ′ + C|2

= 1 +A2 −B2 − C2 + 2(A−BC) cos θ ≥ (1−A)2 − (B − C)2,
(32)

where λ−ν
′
zN
′

= eiθ. Similarly,

d3 := |f3(z)|2 − |f1(z)− f3(z)|2 ≥ (1−B)2 − (A− C)2. (33)
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Note that

B ≤ A, C ≤ B ⇒ B − C ≤ B −AB < 1−A ⇒ d2(z) > 0 for z ∈ S1,

B ≤ A, C > B ⇒ |C −A| < 1−B ⇒ d3(z) > 0 for z ∈ S1,

A ≤ B, C ≤ A ⇒ A− C ≤ A−AB < 1−B ⇒ d3(z) > 0 for z ∈ S1,

A ≤ B, C > A ⇒ |C −B| < 1−A ⇒ d2(z) > 0 for z ∈ S1.

Thus, in all cases, f1(z) = P (z, λ) has the same number of zeros inside S1 as f2(z) or f3(z),

which each have N roots inside S1. Since f1(z) is a polynomial of degree N , all the roots

are inside S1.

4 An infinite hierarchy of interior bifurcations

Next we wish to find all possible cascades of interior bifurcations from these already non-

trivial solutions to more and more complicated time-periodic solutions. The most interesting

consequence of the following theorem is that there are some traveling waves with more

bifurcations to non-trivial time-periodic solutions than predicted by counting the dimension

of the kernel of the linearization of the map measuring deviation from time-periodicity. This

will be illustrated in various examples in Section 5.

Theorem 2 Let M ≥ 2 be an integer and choose

k1, . . . , kM ∈ N, (positive integers, not necessarily distinct or monotonic),

ν1, . . . , νM ∈ Z, (arbitrary integers satisfying νj−1 <
kj−1

kj
νj for j ≥ 2).

Now define the positive quantities

mj = kj−1νj − kjνj−1, τj =
kj(kj + kj−1)kj−1

mj
, γj =

2kjkj−1

mj
, (2 ≤ j ≤M). (34)

Let J = argmax2≤j≤M τj. If there is a tie, J can be any of the candidates. Then there

is an M + 2 parameter family of time-periodic solutions of the Benjamin-Ono equation

parametrized by

s1 ≥ 0, sJ ≥ 0, xj0 ∈ R, (1 ≤ j ≤M) (35)

and constructed as follows. First, we define

sj =
τJ − τj
γj

+
γJ
γj
sJ , (2 ≤ j ≤M, j 6= J), (36)

q1 = s1, p1 = s1 + k1, qj = pj−1 + sj , pj = qj + kj , (2 ≤ j ≤M) (37)
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so that sj ≥ 0 for 1 ≤ j ≤M and

0

s1
��

≤ q1

k1
��

< p1

s2
��

≤ q2

k2
��

< · · ·

sM−1

""

≤ qM−1

kM−1

$$

< pM−1

sM

""

≤ qM

kM

!!

< pM . (38)

For any subset S of M = {1, . . . ,M}, we denote the complement by S′ =M\S and define

kS =
∑
j∈S

kj , νS′ =
∑
m∈S′

νm, CS =

( ∏
(j,m)∈S×S′

ajm

)( ∏
m∈S′

bm

)
, (39)

where

ajm =

√
(pm − qj)(qm − pj)
(qm − qj)(pm − pj)

, bm =
√
qm
pm

e−ikmxm0 . (40)

Then

u(x, t) = α0 +
N∑
l=1

uβl(t)(x) (41)

is a periodic solution of the Benjamin-Ono equation, where N = kM =
∑M

j=1 kj,

α0 =
(

2N − k1 +
ν1

k1
τJ

)
− 2s1 +

ν1

k1
γJsJ , ω =

2π
T

= τJ + γJsJ , (42)

and β1(t), . . . , βN (t) are the roots of the polynomial z 7→ P (z, e−iωt) given by

P (z, λ) =
∑

S∈P(M)

CSλ
νS′zkS . (43)

When M = 2, this representation coincides with that of Theorem 1 if we set

k1 = N −N ′, ν1 = ν − ν ′, s1 = s, x10 = x0 −
ν1

k1
ωt0,

k2 = N ′, ν2 = ν ′, s2 = s′, x20 = x0 −
ν2

k2
ωt0.

It reduces to a traveling wave when s = 0 or s′ = 0 and to a constant solution when both

are zero. Similarly, when M ≥ 3, the solution reduces to a simpler solution in this same

hierarchy (with M replaced by M̃ = M − 1) when s1 or sJ reaches zero. Specifically, if

s1 = 0, then P (z, λ) = zk1P̃ (z, λ), where P̃ (z, λ) corresponds to the parameters

k̃j = kj+1, ν̃j = νj+1, s̃j = sj+1, x̃j0 = xj+1,0, (1 ≤ j ≤ M̃). (44)

We interpret this as an annihilation of k1 particles βl at the origin. If sJ = 0, we have

P (z, λ) = P̃ (z, λ), where

k̃j = kj , ν̃j = νj , s̃j = sj , x̃j0 = xj0, (1 ≤ j ≤ J − 2),

k̃j = kj + kJ , ν̃j = νj + νJ , s̃j = sj , x̃j0 = kjxj0+kJxJ0

kj+kJ
, (j = J − 1),

k̃j = kj+1, ν̃j = νj+1, s̃j = sj+1, x̃j0 = xj+1,0, (J ≤ j ≤ M̃).

(45)
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If several sj are zero when sJ = 0 (i.e. if a tie occurs when choosing J = argmax2≤j≤M τj),

the bifurcation is degenerate and any subset of the indices for which sj = 0 may be removed

using the rule (45) repeatedly (once for each index removed, with J ranging over these

indices in reverse order to avoid re-labeling), allowing for bifurcations that jump several

levels in the hierarchy at once.

Proof: Rather than show directly that P (z, λ) in (43) satisfies (15), we show that each

of our solutions differs from a multi-periodic solution [22, 16] by at most a transformation

of the form (22). We give a direct proof that all the zeros of P (·, λ) lie inside the unit circle

in Appendix A as concluding this from the combined results of [10] and [16] is complicated.

If all the inequalities in (38) are strict, then it is known [16] that

U = 2i
∂

∂x
log

f ′

f
(46)

satisfies the Benjamin-Ono equation (2) with

f ′ =
∑
µ=0,1

exp

 M∑
j=1

µj

iθj − φj − 1
2

M∑
m6=j

Ajm

+
(M)∑
j<m

µjµmAjm

 , (47)

f =
∑
µ=0,1

exp

 M∑
j=1

µj

iθj + φj −
1
2

M∑
m 6=j

Ajm

+
(M)∑
j<m

µjµmAjm

 , (48)

θj = kj(x− cjt− xj0), e2φj =
pj
qj
, kj = pj − qj , cj = pj + qj , (49)

exp(Ajm) =
(qm − qj)(pm − pj)
(pm − qj)(qm − pj)

=
(cm − cj)2 − (km − kj)2

(cm − cj)2 − (km + kj)2
, (50)

where xj0 ∈ R are M arbitrary phase parameters and the notation
∑

µ=0,1 indicates a

summation over all possible combinations of µ1 = 0, 1; µ2 = 0, 1; . . . ; µM = 0, 1. (The

notation
∑(M)

j<m indicates that j and m both vary between 1 and M such that j < m, while∑M
m 6=j indicates that m varies from 1 to M omitting m = j).

We write f ′ and f in (47) and (48) as sums over all subsets S of M = {1, . . . ,M}:

f ′, f =
∑

S∈P(M)

( ∏
(j,m)∈S×S′

e−
1
2
Ajm

)∏
j∈S

eikj(x−cjt−xj0)∓φj , (S′ =M\ S), (51)

where −φj is used for f ′ and +φj is used for f . Next we observe that

u(x, t) = U(x− ct, t) + c (52)

will be time-periodic with period T = 2π
ω if there exist integers νj ∈ Z such that

kj(c+ cj) = νjω, (1 ≤ j ≤M). (53)

12



Then we have

f ′(x− ct, t) =
( ∏
j∈M

eikjx

) ∑
S∈P(M)

CS

( ∏
m∈S′

e−iνmωt

)(∏
j∈S

e−ikjx

)
, (54)

f(x− ct, t) =
( ∏
j∈M

e−ikjxj0e−iνjωteφj

) ∑
S∈P(M)

CS

( ∏
m∈S′

eiνmωt

)(∏
j∈S

eikjx

)
,

with CS as in (39) above. The complex conjugation in f comes from interchanging S and

S′ in the sum after factoring out
(∏

j∈M · · ·
)
. It follows that u in (52) is given by

u = c− 2N + 2i∂x log
g

h
= α0 + 2

(
i∂xg

g
−N

)
+ 2

(
−i∂xh
h
−N

)
, (55)

where

N =
M∑
j=1

kj , α0 = c+ 2N, g(x, t) = P (e−ix, e−iωt), h = ḡ,

P (z, λ) =
∑

S∈P(M)

CSλ
νS′zkS , νS′ =

∑
m∈S′

νm, kS =
∑
j∈S

kj .

(56)

With λ fixed, P is a monic polynomial in z of degree N . If we complexify x and fix t, then

P (e−ix, e−iωt) = 0 ⇔ f ′(x− ct, t) = 0 ⇔ f(x̄− ct, t) = 0, (57)

so all the zeros of P are inside the unit circle iff all the zeros of f are in the upper half-plane

and all the zeros of f ′ are in the lower half-plane. These properties of f and f ′ were assumed

to be true in [22], leaving a small gap in their proof (acknowledged in the paper); we give

a proof in Appendix A. The right hand side of (55) is equal to the right hand side of (14),

which establishes the representation (41) of u(x, t) in terms of the trajectories βl(t) of the

roots of P (·, e−iωt).
Eliminating c from (53) and using (cj − cj−1) = (kj−1 + kj + 2sj), we find that

kjkj−1(kj−1 + kj + 2sj) = (kj−1νj − kjνj−1)ω, (2 ≤ j ≤M). (58)

This shows that mj in (34) must be positive. Eliminating ω, we find that

τj + γjsj = τJ + γJsJ , j, J ∈ {2, . . . ,M}. (59)

Choosing J = argmax2≤j≤M τj and solving (59) for sj in terms of sJ yields (36), which

ensures that sj > 0 whenever sJ > 0. From

α0 = c+ 2N, c = −c1 +
ν1

k1
ω, c1 = k1 + 2s1, ω = τJ + γJsJ , (60)

we obtain the formulas in (42) for α0 and ω.
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Finally, we drop the assumption that the inequalities in (38) are strict and observe what

happens to these solutions when s1 = 0 or sJ = 0. If s1 = 0, then b1 = 0, so

1 6∈ S ⇒ CS = 0, 1 ∈ S ⇒ CS =

( ∏
(j,m)∈(S\{1})×S′

ajm

)( ∏
m∈S′

a1mbm

)
.

But since q1 = 0 and p1 = k1 when s1 = 0, we have

a1mbm =

√
(pm − q1)(qm − p1)
(qm − q1)(pm − p1)

√
qm
pm

e−ikmxm0 =

√
qm − k1

pm − k1
e−ikmxm0 . (61)

Thus, if we define M̃ = M − 1 and shift indices down as in (44), the parameters qj and pj

will decrease by k1 as illustrated here,

0

s1=0
!!

= q1

k1
!!

< p1

s2
!!

< q2

k2
!!

< p2

s3
!!

≤ q3

k3
!!

< · · ·

sM

$$

≤ qM

kM

%%

< pM

0

s̃1=s2

;;
≤ q̃1

k̃1=k2

;;
< p̃1

s̃2=s3

;;
≤ q̃2

k̃2=k3

==< · · ·
s̃M−1=sM

99
≤ q̃M−1

k̃M−1=kM

77
< p̃M−1

(62)

and hence ãjm = aj+1,m+1 and b̃m = a1,m+1bm+1 for 1 ≤ j,m ≤ M̃ , j 6= m. Therefore, with

the notation S̃′ = M̃ \ S̃, the only difference between

P (z, λ) =
∑

S∈P(M),1∈S

CSλ
νS′zkS , P̃ (z, λ) =

∑
eS∈P( fM)

C̃eSλν̃eS′zk̃eS ,

is that each term in the former sum carries an extra factor of zk1 when the sets S and S̃

are matched up in the natural way. Thus P (z, λ) = zk1P̃ (z, λ).

Now consider the case sJ = 0 with J = argmax2≤j≤M τj . This time aJ−1,J = 0 due to

qJ = pJ−1, so CS = 0 unless J − 1 and J are both in S or both in S′. Let us define

PJ(M) = {S ∈ P(M) : J − 1, J ∈ S or J − 1, J ∈ S′}. (63)

When we perform the sum over S ∈ PJ(M) to construct P (z, λ), we can consider J−1 and

J as a single unit. The following factors always appear together in any CS that contains

one of them:

aJ−1,maJm =

√
(pm − qJ−1)(qm − pJ)
(qm − qJ−1)(pm − pJ)

, bJ−1bJ =
√
qJ−1

pJ
e−ikJ−1xJ−1,0e−ikJxJ0 .

Thus we can remove pJ−1 and qJ from the sequence if we short circuit the diagram

0

s1
��

≤ q1

k1
��

< p1

s2
��

≤ · · ·

sJ−1

!!

≤ qJ−1

kJ−1

##

< pJ−1

sJ=0
!!

= qJ

kJ

!!

< pJ

sJ+1

##

≤ qJ+1

kJ+1

  
< · · ·

sM

""

≤ qM

kM

$$

< pM

0
s1

__
≤ q̃1

k1

>>
< p̃1

s2

AA≤ · · ·
sJ−1

;;
≤ q̃J−1

k̃J−1=kJ−1+kJ

44< p̃J−1

s̃J=sJ+1

::
≤ q̃J

k̃J

>>< · · ·
s̃M−1

::
≤ q̃M−1

k̃M−1

99
< p̃M−1
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and set

k̃J−1 = kJ−1 + kJ , ν̃J−1 = νJ−1 + νJ , x̃J−1,0 =
kJ−1xJ−1,0 + kJxJ0

kJ−1 + kJ
. (64)

The other parameters are simply copied from the original sequence as was indicated in (45).

We then have

P (z, λ) =
∑

S∈PJ (M)

CSλ
νS′zkS =

∑
eS∈P( fM)

C̃eSλν̃eS′zk̃eS = P̃ (z, λ),

where again the sets S and S̃ in these sums are in natural 1-1 correspondence.

Finally, we verify that the parameters k̃j , s̃j and ν̃j of the reduced system are consistent

with the construction, i.e. if M̃ ≥ 2 and we define J̃ = argmax
2≤j≤fM τ̃j , then

s̃j =
τ̃J̃ − τ̃j
γ̃j

+
γ̃J̃
γ̃j
s̃J̃ , (2 ≤ j ≤ M̃, j 6= J̃). (65)

Recall that these equations are obtained by eliminating c̃ and ω̃ from

k̃j(c̃+ c̃j) = ν̃jω̃, (1 ≤ j ≤ M̃). (66)

In the first case where s1 = 0, (44) and (53) together with

c̃j = p̃j + q̃j = cj+1 − 2k1, (1 ≤ j ≤ M̃) (67)

imply that (66) is satisfied if we define

c̃ = c+ 2k1, ω̃ = ω. (68)

Since we annihilate k1 particles in this case, Ñ = N − k1, and the mean

α̃0 = c̃+ 2Ñ = c+ 2N = α0 (69)

remains unchanged in spite of the change in c and N (as it must for the solution to vary

continuously through the bifurcation). In the remaining case where sJ = 0, we have

c̃j =


cj , j < J − 1,

cj + kJ = cJ − kj , j = J − 1,

cj+1, J ≤ j ≤ M̃.

(70)

Thus, by (45) and (53), all the equations in (66), except possibly j = J − 1, are trivially

satisfied if we define

c̃ = c, ω̃ = ω. (71)
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The remaining equation is

(kJ−1 + kJ)(c+ cJ−1 + kJ) = (νJ−1 + νJ)ω. (72)

To see that this is true, note that by (53),

kJ−1(c+ cJ−1) = νJ−1ω, kJ(c+ cJ) = νJω. (73)

Adding these equations and using kJcJ = kJ(cJ−1 +kJ−1 +kJ) gives (72), as required. Since

c̃ = c and Ñ = N , the mean α0 = c+ 2N does not change as a result of the bifurcation.

Thus, we have shown that when s1 = 0 or sJ = 0, the function u(x, t) in (41) agrees

with another function in the hierarchy with M reduced by one and the parameter s1 or sJ
removed. Continuing in this fashion, we can remove all the zero indices, eventually yielding

the case where the pj and qj are distinct from one another, or the case that M ∈ {0, 1}. This

shows that u(x, t) is a solution of (2), where we rely on Theorem 1 to handle the reduction

from M = 2 to the traveling wave case M = 1, or the constant solution case M = 0.

5 Examples

In this section we present several examples to illustrate the types of bifurcation that occur

in the hierarchy of time-periodic solutions described in Theorem 2. We begin with the

simplest example that leads to a degenerate bifurcation, namely

M = 3, ~k = (1, 1, 1), ~ν = (−2,−1, 0). (74)

This solution and the three M = 2 solutions connected to it have parameters shown in

Figure 1. We hold the mean α0 = 0.544375 fixed, which is the value used in several of the

numerical simulations in [4, 3], and construct a single bifurcation diagram showing all four

solutions; see Figure 2. Note that paths B,C,D are actually parametrized by

s̃
(B)
1 = s2, s̃

(B)
2 = s3, s̃

(C)
1 = s1, s̃

(C)
2 = s3, s̃

(D)
1 = s1, s̃

(D)
2 = s2 (75)

in formulas (34)–(43), but we use the original variables sj here for the convenience of

making a single bifurcation diagram. The one confusing aspect of doing this is that we

obtain different traveling waves depending on the order in which we set the sj to zero. This

is why we drew two axes for s2 and s3 in Figure 2. For example, if we start on path A and

decrease s1 to zero (moving to path B) and then decrease s3 to zero, we obtain the traveling

wave bifurcation (2,−1, 1, 1); however, if we first set s3 = 0 (moving to path D) and then

set s1 = 0, we obtain the bifurcation (2,−1, 2, 3). Both traveling waves have N = 2 humps

and speed index ν = −1, but the amplitude and period of the two solutions are different as
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path A path B path C path D

k = 1, 1, 1, k = 1, 1, k = 2, 1, k = 1, 2,

ν =−2,−1, 0, ν = −1, 0, ν = −3, 0, ν = −2,−1,

m = 1, 1, m = 1, m = 3, m = 3,

τ = 2, 2, τ = 2, τ = 2, τ = 2,

γ = 2, 2, γ = 2, γ = 4/3, γ = 4/3,

s3 = s2, s1 = 0, s2 = 0, s3 = 0,

α0 = 1− 2s1−4s2, α0 = 1− 2s2 − 2s3, α0 = 1− 2s1 − 2s3, α0 = 1− 2s1 −
8
3
s2,

ω = 2 + 2s2, ω = 2 + 2s3, ω = 2 +
4
3
s3, ω = 2 +

4
3
s2.

Figure 1: Parameters of four paths of time-periodic solutions connected by bifurcations.

they have different bifurcation indices. Similarly, although starting on path A and setting

s2 and s3 to zero in either order leads to the same stationary solution, the period T is

different depending on whether we follow path B to (1, 0, 1, 1) or path C to (1, 0, 2, 3). This

only happens at the bottom (M̃ = 1) level of the hierarchy, where k̃1, ν̃1 and s̃1 are not

sufficient to uniquely determine the traveling wave; if we start with M ≥ 4 and follow two

paths down several levels to M̃ ≥ 2 with the same parameters k̃j , ν̃j and s̃j , the resulting

solution is independent of the path.

In Figure 3, we plot the particle trajectories of several solutions on paths C, D and A

in the bifurcation diagram of Figure 2. We parametrize each path linearly by a variable

θ ∈ [0, 1]. For example, on path A,

s1 =
1− α0

2
θ, s2 = s3 =

1− α0

4
(1− θ), 0 ≤ θ ≤ 1. (76)

Path C connects the one-hump stationary solution to the three-hump traveling wave. When

θ = 4.0×10−6, two particles have nucleated at the origin and execute small, nearly circular

orbits around each other while the third particle travels around its original resting position.

As θ increases, the orbits deform and coalesce into a single path, as shown in the middle

two panels of this row. At the critical value θ = 0.002649485, the particles collide at

t = T/6, t = 3T/6 and t = 5T/6, so the solution of the ODE (8) ceases to exist for all

time; nevertheless, u(x, t) in (41) remains smooth and satisfies (2) for all t. As θ increases

to 1, the common trajectory of the three particles becomes more and more circular until

the traveling wave is reached, where it is exactly circular. The solutions on this path are
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Figure 2: Left: degenerate bifurcation from M = 1 to M = 2 (paths C and D) and M = 3

(path A) with α0 held fixed. Right: three dimensional plot of the solution labeled D4.
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Figure 3: Particle trajectories along paths C,D,A in the bifurcation diagram of Figure 2.
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reducible in the sense that their natural period is 1/3 of the period T used here. However,

in order to bifurcate to paths A and D, we have to use this solution rather than the reduced

solution.

Path D connects the two-hump traveling wave with speed index ν = −1 to the three-

hump traveling wave with speed index ν = −3. When we bifurcate from the two-hump

traveling wave, a new particle nucleates at the origin and grows in amplitude until its

trajectory joins up with the orbits of the outer particles. As θ increases further, the three

orbits become nearly circular and eventually coalesce into a single circular orbit at the

three-hump traveling wave. Note that the particles on path D follow different trajectories,

which leads to a “braided” effect in the peaks and troughs of the solution u(x, t) shown in

Figure 2; unlike path C, these solutions are not reducible to a shorter period.

Path A connects an interior bifurcation on path B to this same three-hump traveling

wave. When θ = 0.0005, a particle has nucleated at the origin without destroying the

periodicity of the orbit of the other two particles. This path involves two topological changes

in the particle trajectories, as shown in the middle two panels of the bottom row of Figure 3.

As θ → 1, this solution also approaches the three-hump traveling wave. This is interesting

because, up to a phase shift in space and time, the linearized Benjamin-Ono equation

about this traveling wave [3] has only two linearly independent, time-periodic solutions

corresponding to the bifurcations (3,−3, 1, 3) and (3,−3, 2, 3); this degenerate bifurcation

is not predicted by linear theory.

In a similar way, we can construct a bifurcation from a traveling wave to an arbitrary

level of the hierarchy by taking

M arbitrary, ~k = (1, 1, . . . , 1), ν = (−M,−M + 1, . . . ,−2,−1, 0). (77)

We find that mj = 1, τj = 2 and γj = 2 for 2 ≤ j ≤ M , so any subset of the indices

J = 2, . . . ,M can be removed to obtain a solution at a lower level of the hierarchy. If all

the indices are removed, we obtain a traveling wave with 2M−1 − 1 bifurcations to higher

levels of the hierarchy, but only M − 1 of them (to the second level) are predicted by linear

theory. The case M = 4 is depicted in the bifurcation diagram of Figure 4, where each

tetrahedron contains paths with one of the sj set to zero, and the outermost point of the

outer three tetrahedra corresponds to one and the same traveling wave. Linear theory

predicts the bifurcations (4,−6, 1, 6), (4,−6, 2, 8), (4,−6, 3, 6) from this traveling wave to

the M = 2 level of the hierarchy, but does not predict the three M = 3 families of solutions

that connect this traveling wave to interior bifurcations on paths B, C and D, nor the

M = 4 solution connecting this traveling wave to path A from the previous example. In

Figure 5, we show six solutions on this M = 4 path labeled E in the bifurcation diagram.
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Figure 4: Degenerate bifurcation from M = 1 to M = 2, 3, 4 with α0 held fixed.
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Figure 5: Particle trajectories along path E in the bifurcation diagram of Figure 4.
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Figure 6: Left: Bifurcation diagram showing a path of time-periodic solutions at level

M = 3 connecting two M = 2 solutions. Right: Three solutions on this path.

When θ = 0+, (where path E meets path A), a fourth particle nucleates at the origin

without destroying periodicity of the other three. As θ increases to 1, the trajectories of the

particles βj(t) undergo several topological changes (that determine which particles exchange

positions over one period) until the trajectories coalesce into a single circular orbit at the

degenerate traveling wave (with each particle moving counter-clockwise one and a half times

per period).

Finally, in Figure 6, we show a path of solutions at level M = 3 that connects two

M = 2 solutions by interior (non-degenerate) bifurcations. The parameters of this path are

M = 3, ~k = (1, 1, 1), ~ν = (−2, 0, 1). (78)

We parametrize this path by

s1 =
θ

2
, s2 =

3− θ
2

, s3 =
1− θ

4
, (0 ≤ θ ≤ 1). (79)

When θ = 0, we obtain the M = 2 family of solutions that bifurcates from a two-hump,

right traveling wave with indices (2, 1, 1, 1). For this family of solutions, the mean is related

to the parameters s̃1 = s2 and s̃2 = s3 via α0 = 3 − 2s2; hence, holding the mean fixed

requires that s2 remains constant. We will not reach the one-hump, right traveling wave at

the bifurcation (1, 1, 1, 1) unless we increase α0 to 3. As we increase θ in (79), the trajectory

of the particle that nucleates at the origin at θ = 0+ grows and merges with the trajectories

of the original two particles through three topological changes: one at F1, one not shown,

and one at F3. Eventually, when θ = 1, path F joins path G connecting (2, 1, 2, 5) to

(3,−1, 1, 5). Since the two-hump traveling wave moves to the right while the three-hump

traveling wave moves to the left, the solution at F3 involves particles moving clockwise for

part of their orbit and counter-clockwise at other times, leading to an interesting three-

particle trajectory with 5-fold symmetry.
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A Zeros of the polynomial P (·, λ)

As mentioned in the proof of Theorem 2, there is a small gap in the paper [22] showing

that the multiperiodic solutions (46) satisfy the Benjamin-Ono equation, for the bilinear

formalism used to derive these solutions requires that the zeros of f (or f ′) in (47) and

(48) lie in the upper (or lower) half of the complex plane. In this appendix, we prove the

equivalent assertion (in the case that all the ki are integers) that the zeros of the polynomial

P (·, λ) in (43) lie inside the unit disk. The two key ideas of this proof, namely showing

that P (or f) has a representation as a determinant, and that the matrix is non-singular for

|z| ≥ 1, are essentially due to Matsuno [16] and Dobrokhotov/Krichever [10], respectively.

Theorem 3 Suppose M ≥ 2, k1, . . . , kM ∈ N, ν1, . . . , νM ∈ R, x10, . . . , xM0 ∈ R, and

0 < q1 < p1 < q2 < p2 < · · · < qM < pM . (80)

Let M = {1, . . . ,M} and define the polynomial

P (z, λ) =
∑

S∈P(M)

CSλ
νS′zkS , CS =

( ∏
(i,j)∈S×S′

aij

)(∏
j∈S′

bj

)
, (81)

where S′ =M\ S, kS =
∑

i∈S ki, νS′ =
∑

j∈S′ νj, and

aij =

√
(pj − qi)(qj − pi)
(qj − qi)(pj − pi)

, bj =
√
qj
pj
e−ikjxj0 . (82)

Then all the zeros βl of P (·, λ) lie inside the unit disk ∆ ∈ C provided |λ| = 1.

Proof: First we show that

P (z, λ) =
[ M∏
j=1

(pj − qj)
][ M∏

j=1

bjλ
νj

][ (M)∏
i<j

a2
ij

]
detR(z, λ), (83)

where the M ×M matrix R(z, λ) has entries

Rij(z, λ) = ri(z, λ)δij +
1

pi − qj
, ri(z, λ) =

b−1
i λ−νizki

pi − qi

M∏
j 6=i

a−1
ij . (84)

The symbol
∏M
j 6=i indicates a product over j ∈M omitting j = i, while

∏(M)
i<j is a product

over all pairs (i, j) ∈ M2 such that i < j. By expanding detR =
∑

σ sgn(σ)Ri,σ(i) and

collecting like products of the ri(z, λ), we find that

detR =
∑

S∈P(M)

[∏
i∈S

ri

]
detRS′ ,

(
RS′
)
ij

=
1

pS′i − qS′j
. (85)
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Here {S′1, . . . , S′n} is an enumeration of S′, i.e. RS′ is the n×n (Cauchy) matrix obtained by

removing the rows and columns with indices in S from the Cauchy matrix
{

(pi−qj)−1}Mi,j=1,

and detR∅ is taken to be 1. The determinant of a Cauchy matrix is well-known, giving

detRS′ =

∏(S′)
i<j (pi − pj)(qj − qi)∏

i,j∈S′(pi − qj)
=
[ ∏
j∈S′

1
pj − qj

] (S′)∏
i<j

a−2
ij . (86)

Thus, the right hand side of (83) is equal to

∑
S∈P(M)

[ ∏
j∈S′

bjλ
νj

][∏
i∈S

zki

][∏
i∈S

M∏
j 6=i

a−1
ij

][ (S′)∏
i<j

a−2
ij

][ (M)∏
i<j

a2
ij

]
. (87)

If i and j are both in S or both in S′, the terms a2
ij in the final product cancel with

corresponding terms in one of the previous two products. If i ∈ S and j ∈ S′, one of the

factors of aij (or aji if i > j) in the final product cancels with a−1
ij in the middle product,

leaving behind
∏

(i,j)∈S×S′ aij , as required.

Next we show that R(z, λ) is invertible for |z| ≥ 1 and |λ| = 1. Fix such a z and λ.

Define di = |b−1
i λ−νizki | so that

|ri|2 =
d2
i

(pi − qi)2

M∏
j 6=i

(qj − qi)(pj − pi)
(pj − qi)(qj − pi)

, di > 1. (88)

Suppose for the sake of contradiction that there is a non-zero vector γ ∈ CM such that

Rγ = 0. This means that

M∑
j=1

(
riδij +

1
pi − qj

)
γj = riγi + ψ(pi) = 0, (1 ≤ i ≤M), ψ(k) :=

M∑
j=1

γj
k − qj

.

Then we define

φ(k) =

(∑
i

γi
k − qi

)(∑
m

γ̄m
k − qm

)∏
j

k − qj
k − pj

 (89)

and observe that

resk=pi
φ+ resk=qi φ =

|γi|2

pi − qi

[∏
j 6=i

qi − qj
qi − pj

](
d2
i − 1) ≥ 0, (1 ≤ i ≤M) (90)

where the inequality is strict if γi 6= 0 and we used |ψ(pi)|2 = |ri|2|γi|2. Thus, the sum of

all the residues of φ(k) is strictly positive, contradicting φ(k) = O(k−2) as k →∞.
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B Uniqueness of Periodic Traveling Waves

In this section we elaborate on the paper [5] showing that the only traveling wave solutions of

the Benjamin-Ono equation are the solitary and periodic wave solutions found by Benjamin

in [7]. The purpose of this section is to modify their argument to prove that we have found

all 2π-periodic traveling solutions, and to simplify part of their analysis.

Consider any non-constant, 2π-periodic traveling solution of (2). After a transformation

of the form (22), we may assume u(x) is a stationary solution satisfying

uux = Huxx, (x ∈ R
/

2πZ). (91)

After a translation, we may assume ux(0) = 0. Integrating once, there is a constant c such

that
1
2
u2 = Hux +

c2

2
, (c > 0). (92)

The integration constant must be positive since Hux is the derivative of a periodic function

while the left hand side is positive. Now define the holomorphic function

f1(z) =
1
π

∫ 2π

0

u(θ)eiθ

eiθ − z
dθ, (z ∈ ∆). (93)

A direct calculation using Fourier series shows that

f1(z+) = α0 + u(θ) + iHu(θ), z = eiθ, α0 =
1

2π

∫ 2π

0
u(θ) dθ, (94)

where f1(z+) is the limit of f1(ζ) as ζ approaches z from the inside. Now define

f2(z) = f1(eiz)− α0, Im z ≥ 0. (95)

Then f2(z) is analytic and bounded in the upper half-plane and satisfies

f2(x) = u(x) + iHu(x), x ∈ R. (96)

Next we extend u(x) to the upper half-plane via u(x, y) = Re{f2(x+ iy)} and define

U(x, y) =
u(x/c, y/c) + c

2c
, (97)

where c was determined by u(x) in (92). We then have

uy(x, 0) = Re{if ′2(x)} = −Hux(x) =
c2 − u(x)2

2
, Uy(x, 0) = U(x, 0)− U(x, 0)2.

Amick and Toland [5] showed that any non-constant, bounded, harmonic function U(x, y)

defined in the upper half-plane and satisfying the nonlinear Neumann boundary condition

Uy = U − U2 on the real axis as well as Ux(0, 0) = 0, is given by

U(x, y) = Re{f(x+ iy)}, (y ≥ 0), (98)
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where f(z) is the (unique) solution of the complex ordinary differential equation

df

dz
(z) =

i

2
[
f(z)2 − a2

]
, f(0) = U(0, 0), a =

√
2U(0, 0)− U(0, 0)2 (99)

over the upper half-plane. Moreover, such a solution U(x, y) will satisfy U(0, 0) ∈ (0, 1) ∪
(1, 2], and the case U(0, 0) = 2 corresponds to the solitary wave solution U(x, 0) = 2/(1+x2),

which is ruled out by the assumption that u in (91) is periodic. Rather than treat the cases

U(0, 0) ∈ (0, 1) and U(0, 0) ∈ (1, 2) separately as was done in [5], we choose the unique

β ∈ (−1, 1) such that

U(0, 0) =
(1 + β)2

1 + β2
, a =

1− β2

1 + β2
(100)

and check directly that

f(z) = a

[
1 +

2β
e−iaz − β

]
(101)

satisfies (99). Since U(x, y) = Re{f(x + iy)} is x-periodic with (smallest) period 2π
a while

u(x, y) = [2cU(cx, cy) − c] is x-periodic with period 2π, it must be the case that c = N/a

for some positive integer N . But then

u(x) = Re{Nf3(Nx)}, f3(z) =
2
a
f
(z
a

)
− 1
a

=
1− 3β2

1− β2
+

4βeiz

1− βeiz
, (102)

i.e. u(x) is one of the N -hump stationary solutions discussed in Section 3.
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